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Abstract. A study of the two-dimensional Ising model on a rectangular lattice decorated 
with v-dimensional classical vector spins or Ising spins of magnitude s in an external field 
is presented. Exact expressions are obtained for the magnetisation and correlation func- 
tions, and the phase diagram is also determined exactly. It is shown that when there is 
no direct interaction between the spins of the host lattice there is a critical field h,, above 
which the system does not present long range order, and that this h,  does not depend on 
v or s. The isothermal susceptibility related to the decorating spins is also obtained exactly, 
and it is shown that it diverges logarithmically at the transition temperature only for 
non-vanishing external field. A discussion is presented on the solution of equivalent models, 
and as a by-product it is shown how to map the model onto the two-dimensional eight-vertex 
model with temperature dependent parameters in an arbitrary staggered field. 

1. Introduction 

The exact knowledge of the effect of an external magnetic field on the critical behaviour 
of the Ising model is still restricted to one-dimensional lattices. Although many years 
have passed since the zero-field solution was obtained for the two-dimensional square 
lattice (Onsager 1944) no exact result has been obtained so far for the problem in the 
presence of an external field. 

There are, however, some decorated Ising models in a magnetic field which are 
amenable to exact solutions. The first of these models was introduced by Fisher (1959a) 
and its solution also obtained in detail by Fisher (1960a, b). It corresponds to the case 
when the decorating spin is an Ising spin of magnitude 5. 

The purpose of this paper is to study exactly the effect of the external field on the 
two-dimensional decorated Ising model when the decorating spins are v-dimensional 
classical spins or Ising spins of magnitude s. The study corresponds to an extension 
of Fisher’s model (Fisher 1960a, b), and the critical behaviour of the system is analysed 
under more general circumstances. We also discuss other models which present the 
same solution and the relation of one of those to the eight-vertex model. 

In 0 2 we present the basic general results for the decorated model in an arbitrary 
external field. In P 3 we discuss the exactly soluble cases and a mapping onto the 
eight-vertex model. In the final section specific cases are presented and the main results 
discussed. 

5 On sabbatical leave from the Departamento de Fisica da UFCe, Fortaleza, Ceari, Brazil on a CNPq 
(Brazilian Agency) Fellowship. 
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2. General results 

The model that we are going to consider is the whole decorated Ising model on a 
rectangular lattice whose Hamiltonian is given by 

- c TlAl+l, (JIU, + J 2 ~ l + l / )  - c kj - c h(TY,,+Ij + Tl/,Y+l) (1) 
( I / )  ( ’/ 1 ( 11) 

where U = * 1 and T denotes an Ising spin of magnitude s or the vth component of 
the classical v-dimensional classical spin. The partition function is then given by 

where as usual p = 1/ kB T, and the sum over the set { ;} means integrals on the hypersolid 
angles associated with each classical vector spin (Gongalves 1982), when T is the vth 
component of the classical vector spin. The sum cjn T }  can be performed immediately 
(Gongalves 1982, Goncalves and Horiguchi 1984) and we can write 

z = ( rp)N exp( -PH’) 
( 0 )  

where N is the number of sites of the lattice, 

(3) 

and H’ is given by 

with 

and f, J’, 6, E; are abtained from equations (4) and (6) by substituting Jl and J2 by 
J, and J2 respectively. The function F (z )  which appears in the previous equation is 
given by (Gongalves and Horiguchi 1984) 

sinh[pz(s +f)] 
sinh(pz/2) 

F ( z )  = 

when T is an Ising spin of magnitude s, and by 

(7)  

where Zv/2-1 is the modified Bessel function of first kind, when T is the vth component 
of the classical vector spin. 



Decorated king model in a magnetic Jield 1451 

An exact solution for the problem is only possible when the effective field is equal 
to zero. This defines a surface in the parameter space, whose equation is given by 

C + f ( h i +  @ +  hi+ 6;) = O  (9) 

where we can get a solution for a non-zero external field. Although a general analysis 
of the problem can be carried out, in this paper we will be interested only in the case 
where 6 is equal to zero. This corresponds to having a non-uniform field applied to 
the lattice (Fisher 1959a). 

The thermodynamic properties, provided equation (9) is satisfied, can easily be 
found from the known results for the two-dimensional Ising model (see, for instance, 
McCoy and Wu 1973). 

The magnetisation and spin correlations are obtained by using a procedure adopted 
previously (Gonsalves and Horiguchi 1984), namely to write the identity 

c {exp[P(J,(+1 + J z ( + z ) ~ l 2 + m ~ 1 2 1 ~ 1 2 ~  
7 1 2  

= G(J,(+,+J2az+h) 

= F (  J ,  + J p 2  + h )(XI ( T I  (TI + Xzc7, + X3(+2 + x4) (10) 

where G is given for each kind of decorating spin respectively by (Gonsalves and 
Horiguchi 1984) 

G( z )  = sF( z)B,( s z )  

G( z )  = ( 2 ~ ) y ’ z ( ~ z ) ’ ~ ” ’ 2 Z y ~ 2 ( ~ z )  (12) 

(11) 

and 

where B,( z )  is the Brillouin function. The x given by equation (10) are easily obtained 
and are given by 

x, = f [  F(Jl + J z +  h )  + F(J1 - J z  - h )  - F ( J ,  + J z  - h )  - F ( J ,  - Jz+  h ) ]  

xz = a[ P(J, + Jz+  h )  + F ( J ,  + J2 - h )  + RJ1- J z  + h )  + m1 - J z  - h ) l  

x3 = a[ P( J1 + J* + h )  + F(  J ,  + J z  - h )  - P(J1-  5 2  + h 1 - “( - J z  - h )I 
x4 = f [ F ( J ,  + Jz  + h )  + F ( J ,  - J z  + h )  - F ( J ,  + J2 - h )  - RJ, - J2 - h ) l  

where P ( z )  is defined as 

F (  z )  = G( z ) /  F (  z ) .  (14) 

There is also another set of {x}, which we will call {f}, which is obtained from equation 
(13) by substituting J1 and J2  by jl and J2 respectively. 

The magnetisation per vertex is determined immediately by using equations (10) 
and (13), and can be expressed as 

M = (1 + x* + x3 + 3 2  + f 3 ) ( ( + )  + X1(U1(+2)h + fl((+lcr~)v + x4 + T4 (15) 

are the nearest-neighbour pair correlation functions along the horizontal 
where ( U )  is the magnetisation of the effective Ising model described by H’,  and 
and ( U ,  
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and vertical directions respectively. The spontaneous magnetisation is obtained from 
equation (15) by taking the limit h, i+ 0 and this implies 

x l = x q = o  X l = X 4 = 0  (16) 

M = (1 + x2 + x3 + 2 2  + X,)(U). (17) 

By using equation (lo),  the pair spin correlation functions for the decorating spins 
are also easily expressed in terms of correlation functions in the effective Ising model, 
and the various pair spin correlations are given by 

which gives 

where 

cy = x! uU‘v+ 1 + x2u1J + ‘3 
FIJ = flUlJU1+1, + X ~ U ,  + 23u,+lJ + 24.  

1 + x 4  
(19) 

The susceptibility associated with the decorating spins is naturally given by 

aMD I a 2 ( h  2)  
a h  PN a h 2  x=-=-- 

which is immediately evaluated provided the partition function is known as a function 
of h. 

3. Exactly soluble cases 

For the special case where K = O  equation (9) is trivially satisfied provided we have 
the relations 

J, = - J1 -I, = - J2. (21) 

For J = J ,  = J2 and s = 3 or v = 1, the solution reduces to the one obtained by Fisher 
(1960a, b). By using the condition shown in equation (21) and bearing in mind that 
P(z) is an odd function, we can write the total magnetisation in the form 

(22) 

where we have also assumed J = 1 It should be noted that this condition will also be 
assumed in all subsequent discussions. By comparing equations (17) and (22) we 
conclude immediately that the terms in x 1  and x4 correspond to the induced magnetisa- 
tion. It is worth noting that x2 = -X2 and x3 = - X 3  when the exchange constants satisfy 
equation (21), even for h different from zero. Therefore the magnetisation associated 
with the long range order, even in the presence of the field h, is the magnetisation of 

M = (U) + 2xl(ulu,) + 2x4 
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the host lattice, namely ( U ) .  In passing we would like to mention that we could define 
a long range magnetisation as 

(23) M = (1  + x,+ ~3 - 2 2  - .f,)(~) f (XI - . f , ) ( ~ 1 ( + 2 )  + x.4 - 24 
which for the parameters given by equation (21) reduces to 

M = (1  + 2x2 + 2x3)(u). 

For K =  0 the critical behaviour is obtained just by studying ( U )  which is the magnetisa- 
tion of the host lattice. 

The transition temperature is obtained from the Onsager solution (Onsager 1944) 
and is given by the equation (see, for example, McCoy and Wu 1973) 

K + K ’ =  i f l n ( 1  +h) (25) 

where K = PJ  and K ’ =  PJ’ .  
The critical field is determined by considering the solution of equation (25) in the 

limit p + a. Without loss of generality we will consider J1, J2 > 0 and J ,  > J2 .  It should 
be noted that this is so because J’ satisfies the relations 

It should also be noticed that the expressions for the critical field are valid only for 
J s 0. For J > 0 the transition temperature is always finite. 

When the decorating spin is an Ising spin of magnitude s we have for the critical 
field the result 

h,  = (2J/ s) + ( J ,  + J 2 )  for J , + J , > h  and J , - J 2 < h .  (27) 

For h > J1 + J2 and J = 0 there is no macroscopic order provided J1 - J2 < h. 
Identically when the decorating spins are unit v-dimensional classical spins the 

critical field is obtained by considering the asymptotic behaviour of the modified Bessel 
function (Abramowitz and Stegun 1965) and we get a similar result 

h,  = 2J+ (3, + J J  for J 1 + J 2 > h  and J 1 - J 2 < h .  (28) 

If we consider 131 = v 1 l 2  and renormalise the exchange constants as J, ,  J 2 +  V ” ~ J , ,  
v1”J2 (Goncalves and de Almeida 1983) and the magnetic field h + v”2h we can write 
the previous equation in the form 

h,  = (25 / v ) + ( J ,  + J 2 )  (29) 

with J1 and J2 restricted to the same conditions. In both cases for J = 0 and h > J1 + J2 
there is no macroscopic order provided J ,  - J2 < h. 

The isothermal susceptibility, given by equation (20), can be calculated from the 
expression 

(30) X = d( 2X I (  ‘71  U2) + 2X4)/ d h 
where all the terms are known. 

The model discussed so far is equivalent to the one where we have uniform J ,  and 
J2, and an external field h acting on the spins decorating the horizontal bonds and an 
external field - h  acting on the spins decorating the vertical bonds. It is also equivalent 
to the model where we have uniform exchange constants J ,  and J2,  in an external 
staggered field acting on the decorating spins. In this case the susceptibility defined 
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by equation (20)  will correspond to the staggered susceptibility. The model can also 
be exactly solved when J ,  = J2 and Jl = J2, and shown under some conditions to be 
equivalent to the eight-vertex model (see, for instance, Baxter 1982) in a staggered 
field when Y = 1 or s = i. This result can easily be obtained by considering the limit 
J + 0 and decimating the spins of the host lattice. After this procedure the partition 
function can be written as 

ZD = AN’ exp( - p H “ )  
{ V I  

where 

with 

C O S ~ ( ~ K , + ~ K , )  C O S ~ ( ~ K , - ~ K , )  
Js =In( 

cosh2 2K, cosh’ 2K, 

Cosh2 2Kl C O S ~ ( ~ K , + ~ K , )  cosh(2KI -2K,) 

(34) 
J H  =ln( cosh2 2K, ) 

cosh’ 2K1 C O S ~ ( ~ K ~ + ~ K , )  cosh(2KI -2K,) 
cosh2 2K, 

Jv = In 

C O S ~ ( ~ K ~ + ~ K , )  cosh(2KI -2Kl) ( cosh(2Kl-2K,) 
J p  = In 

Since the partition function ZD is known we can write 

Z = exp( - p H ” )  = Z D / A N ’ .  
to) 

(35)  

It should be noted that in the previous expressions we have redefined the labels of the 
decorating spins after the decimation of the spins of the host lattice. The decorating 
spins naturally form a new rectangular lattice. 

Equations (31)-(35)  allow the determination of the thermodynamic properties of 
the eight-vertex model for a dependent set of parameters { J . ,  Jv, JH, J p }  and arbitrary 
staggered field h,. Although there are some limitations as far as the parameters are 
concerned we believe that this kind of mapping is worthwhile mentioning as a by- 
product of our calculation. 

4. Results and conclusions 

We will proceed to a final analysis of the results obtained so far, near the transition 
temperature at zero field and for small field. In all the results that we will be looking 
at we will restrict ourselves to the limiting case, namely J ,  = J2 which contains the 
main features of the model. 
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The transition temperature for small field can be obtained from equation (25) by 
expanding the effective exchange constant 

Keff = a K ,  + K '  (36 )  

a = J /  J ,  (37) 

Kea= K&+ Dl( K1- K f )  + D2(pch)2 + 0[( K1 - Kf)'] + O[ h4] (38) 

where 

in the neighbourhood of the transition temperature at zero field. The expansion will give 

where 

and where we have used the notation F "  = d"F/d(pz)". By substituting the previous 
result in equation (25) we get 

h2  Dz T =  T c + - -  
kBJ1 Dl' 

A similar expansion can be obtained for the susceptibility (equation (30)). This is 
immediately obtained by considering the expansion for (ala2) near Kea as (McCoy 
and Wu 1973) 

( ~ 1 ~ 2 ) -  ~ 1 + f ( ~ : f i ) ( ~ e f i - ~ , ' , )  lnlKefi-K:ffl. (41) 

By using equation (38) the previous equation can be written in the form 

(alaz)- C1 + f ( K 3 D 1 ( K 1  - Kf)  lnlKl - K f l + f ( K 3 D 2 P f h 2  lnlK1 - Kf/. (42) 

Finally by expanding x, and x4 and keeping the terms on first order in the magnetic 
field only, we obtain 

XI = PcD3 h x2 = PcD4h (43) 

where 

where we have kept the constant and singular terms only. 
The behaviours shown in (40), (42) and (45) are independent of s or v and are 

identical to the ones obtained by Fisher (1960a) for s = $ although the constants 
contained in these expressions depend on s or v. As we see the zero-field susceptibility 
is finite at any temperature and diverges logarithmically at T, for finite field. In particular 



1456 L L Gongalves and T Horiguchi 

4 -  

3 -  

2 -  

hlJ 0.0 

a 

Figure 1. Transition temperature Tc ( Fc = k ,T , /J )  as a function of (I (a = J ' / J )  for various h and s = 4. 

hlJ:O.O 

U 

Figure 2. As figure 1 for s = 1. 
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equation (45), in the zero-field limit, is identical to the rigorous result obtained by 
Fisher ( 1959b) for the two-dimensional antiferromagnetic Ising model. This result is 
a special case of the universal behaviour expected for the susceptibiliy, namely 

x - A +  B I K  - K J - =  (46) 

where A and B are constants and a is the specific heat critical exponent. 
The phase diagrams are shown in figures 1-3 for s = f, s = 1, v = 3 and for various 

values of the field. For a given field when T, is equal to zero the spins of the host 
lattice behave as free spins since at this point Jeff is equal to zero. The ordered states 
located on the right of this point are ferromagnetic and the ones on the left antiferromag- 
netic. As we see from the figures these regions are functions of the applied field up 
to the maximum value equal to 2J. For fields larger than 25 the ordered state will be 
ferromagnetic or antiferromagnetic as J' is positive or negative, respectively. 

Another important effect of the field is to suppress the antiferromagnetic state 
which exists at higher temperatures than the ferromagnetic state, for a given set of 
parameters. In the absence of the field they do exist for v > 1 and s > 4 (Horiguchi 
and Gonsalves 1983), and as we see from figures 2 and 3 they are clearly suppressed 
by the field. 

Finally we would like to mention that the critical exponents are not modified by 
the field nor the decoration. This means that the model belongs to the same universality 
class as the two-dimensional Ising model. This result is obtained by following the 
procedure adopted by Horiguchi (1984) and Gonsalves (1985) in the study of other 
decorated models. In passing we would like to mention that this is consistent with 
Fisher's general results (Fisher 1968). Even if we had a constraint in our model there 
would be no renormalisation of the critical exponents since a is equal to zero for the 
undecorated lattice. 

U 

Figure 3. As figure 1 for Y = 3 .  
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